Math 275D Lecture 1 Notes

Daniel Raban

September 27, 2019

1 Introduction to Brownian Motion

1.1 Definition of Brownian motion

Here is a heuristic definition of Brownian motion, describing its properties.

Definition 1.1. Brownian motion is a "random" function B(t) for $t \ge 0, t \in \mathbb{R}$ such that

- 1. B(0) = 0
- 2. (Independence on disjoint intervals) $B(t_2) B(t_1)$ is independent of $B(t_4) B(t_3)$ if $[t_3, t_4] \cap [t_2, t_1] = \emptyset$ for any $t_1, t_2, t_3, t_4 \in \mathbb{R}$ with $t_i \ge 0$.
- 3. For all t > 0, $B(t) \sim N(0, t)$.
- 4. B(t) is continuous a.s.

We can ask many questions about Brownian motion. For example, we can ask what is $\sup_{0 \le t \le 1} |B(t)|$?

1.2 Comparison with the Poisson process

This is similar to a Poisson Process. Recall the Poisson Process:

Definition 1.2. A Poisson process is a "random" function N(t) for $t \ge 0, t \in \mathbb{R}$ such that

- 1. N(0) = 0
- 2. $N(t_4) N(t_3)$ is independent of $N(t_2) N(t_1)$ if $[t_3, t_4] \cap [t_2, t_1] = \emptyset$ for any $t_1, t_2, t_3, t_4 \in \mathbb{R}$ with $t_i \ge 0$.
- 3. $N(t) \sim \text{Pois}(t)$.

How do we know such a thing actually exists? We need to have a probability space $(\Omega, \mathcal{F}, \mathbb{P})$? What are the sample space and measurable sets we want to talk about? To talk about a Poisson process, we only need to know when the times of the jumps are. So we can take Ω to be the set of step functions and $\mathcal{F} = \sigma(N(t) : t \ge 0)$.

We can define Ω, \mathcal{F} for Brownian motion similarly. But how do we define \mathbb{P} ? The Heuristic definition only defines \mathbb{P} on some special events! Next time, we will make this rigorous. Later, we will define it in yet another, better way and show that the methods are equivalent.